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Abstract

Large Language Models (LLMs) show promise for generating Answer Set Programming (ASP) code from natural language, but
reliably producing programs that are both syntactically and semantically correct remains challenging. Prior work has shown that
iterative syntax feedback can improve compilability, while semantic correctness often lags behind. In this paper, we investigate
whether combining supervised fine-tuning with a dual-stage repair architecture—consisting of syntactic validation and an LLM-
based semantic feedback loop—can improve ASP code generation. We fine-tune a Qwen2.5-7B-Instruct model using a custom
dataset build using publicly available Clingo code, augmented with synthetic repair tasks to explicitly train debugging behavior.
We evaluate our approach on four established scheduling domains using multiple experimental setups with and without fine-tuning
and semantic feedback. Our results show that fine-tuning leads to near-perfect syntactic correctness and a substantial improvement
in semantic accuracy. However, the introduction of a semantic feedback loop does not yield additional gains and in some cases
degrades performance due to unreliable semantic validation. These findings suggest that semantic validation itself should be treated

as a learning problem, motivating future work on fine-tuning dedicated semantic validator models.

Keywords: Answer Set Programming, Large Language Models, Code Generation, Fine-tuning, Iterative Feedback, Semantic
Validation, Program Repair, Declarative Programming, Logic Programming, Clingo

1. Introduction

Since the launch of ChatGPT, the popularity of Large Lan-
guage Models (LLMs) has grown massively, with these mod-
els becoming accessible to the general public due to the intro-
duction of user-friendly, conversational systems, which signifi-
cantly lowered the barrier to entry for interacting with advanced
Al models. Naturally, this led to these models being applied for
code development as well, with significant accelerations in the
development process as a result (Mohamed et al., 2025). Mean-
while, research towards the potential of LLMs for declarative
programming has been limited (Coppolillo et al., 2024).

One of these declarative programming languages is An-
swer Set Programming (ASP). ASP is a powerful language for
knowledge representation and expresses problems as logical
rules. An ASP solver can then derive so-called Stable Mod-
els which represent all possible solutions given the constraints
set by those rules. It should be noted, however, that specifying
those logical rules can be challenging, as it requires expertise
on ASP, which limits its accessibility. The use of LLMs for the
generation of ASP programs could help reduce this challenge.
Furthermore, ASP code generation through LLMs opens the
possibility of integrating ASP (and therefore knowledge rep-
resentation and reasoning) into conversational agents such as
ChatGPT, similarly to how tools like Python are currently in-
tegrated. However, generating fully syntactically and semanti-
cally correct ASP programs using LLMs remains an open prob-
lem, which we will discuss further in Section 2.

2. Background

2.1. Answer Set Programming

Answer set programming is a logic programming approach
that falls under the declarative paradigm, which means the valid
solution is specified and a solver like Clingo is used to find it.
ASP programs consist of rules that specify conditions on values
of variables (Lifschitz, 2019). These rules consist of a head and
a body, split by the :-, and are of the form:

ag 1- dl,...,ay, DOt Ayy1, ..., 00t ay,.

The not denotes negation as a failure, and q; are called atoms.
Atoms have the form p(¢,...,?,) where terms (¢;) may be con-
stants, variables, arithmetic or functional terms. A literal is ei-
ther an atom or its negation. The head of a rule is derived if
all literals are satisfied, meaning positive literals are true and
negated ones are not proven true. Rules with an empty body are
called facts while rules with an empty head are constraints.

To add expressive power to the language, several extensions
are defined such as choice rules (for selection), aggregates (for
numerical reasoning) and optimization statements (for ranking
solutions). The optimization statement is especially relevant as
it guides the solver to prefer certain answer sets over others,
while the choice rule allows the solver to decide which atoms
to include. In this rule, the head is an expression in braces,
representing the possible atoms that may be chosen given lower
(1) and upper («) bounds:

Uay,...,antu i - apmet, ..., Gy, DOt Apyq, ..., N0t d,.



The generate, define and test is a common structure to de-
fine answer set programs. The generate part creates the search
space of possible solutions. The fest part filters out invalid so-
lutions by applying constraints. The define part specifies def-
initions which make the test easier to express. Examples of
ASP implementations and applications can be found on the of-
ficial project of the Potsdam Answer Set solving community at
https://github.com/potassco. For a more detailed intro-
duction to ASP we refer to Lifschitz (2019).

2.2. LLMs approaches for ASP

The use of LLMs for ASP is not new and several approaches
have already been studied. One of these approaches follows a
Few-Shot, Chain of Thought (CoT) prompting approach, where
natural language is first converted into Controlled Natural Lan-
guage (CNL) (similar to Borroto et al. (2024)) which is then
fed into an LLM pipeline, where the output is built in several
chained steps (Heyninck et al., 2025; O’Brien, 2025; Rosen-
berg, 2025). Results show that the CoT approach outperforms
zero-shot approaches using a single prompt, but are not yet fully
correct in both syntax and semantics. Results from Ishay et al.
(2023) show similar results.

2.3. Fine-tuning

Supervised Fine-Tuning (SFT) adapts pre-trained language
models to specific downstream tasks (Ouyang et al., 2022).
However, fully updating parameters is computationally ex-
pensive and risks catastrophic forgetting. To address this,
Parameter-Efficient Fine-Tuning (PEFT) methods like Low-
Rank Adaptation (LoRA) (Hu et al., 2022) freeze the pre-
trained weights and inject trainable rank decomposition matri-
ces into the transformer layers. This approach significantly re-
duces memory requirements while maintaining model quality,
often combined with quantization (QLoRA) (Dettmers et al.,
2023) for further efficiency.

In the context of ASP, fine-tuning open-weights models of-
fers a cost-effective alternative to proprietary LLMs. Coppo-
lillo et al. (2024) applied QLoRA to fine-tune a lightweight
Gemma-2B model on synthetic atomic patterns (LLASP). Sim-
ilarly, van der Westhuizen (2025) fine-tuned a Phi-2 model us-
ing AspPy2, a framework for generating procedural templates.
While these studies demonstrate the feasibility of learning ASP
syntax, they rely on template-heavy data which limits linguistic
diversity. Furthermore, van der Westhuizen (2025) found that
chained architectures (Natural Language — Controlled Natural
Language — ASP) often underperformed due to information
loss.

2.4. Iterative feedback

The use of iterative feedback loops to improve code gener-
ation is an active field of study, with recent work focusing on
self-correcting LLMs (Chen et al., 2023; Ravi et al., 2025). Em-
pirical studies for improving the syntax quality of code have
been conducted by Quoc et al. (2024) and Ravi et al. (2025).
Quoc et al. (2024) showed how using a syntax checker and code
executor for detecting and correcting code can lead to higher

code quality. Ravi et al. (2025) introduce a framework using
multiple iterative feedback loops. In their work, the model will
try and fix incorrect code based on the syntax error until the
code compiles or a retry limit is reached.

Applying the ideas of Quoc et al. (2024) and Ravi et al.
(2025), Alberts et al. (2025) expanded upon the work of Heyn-
inck et al. (2025) by introducing a syntactic feedback loop. Af-
ter the generation of a line of Clingo code, the code is validated
by the Clingo API and possible error messages are fed back into
the LLM to be repaired. Figures 1 and 2 provide an overview
of the architecture used in their work. Although they did not
fine-tune an LLM for self-debugging (as suggested by Jiang
et al. (2025)), results from Alberts et al. (2025) show that in-
cluding an iterative feedback loop results in an improvement in
syntactic correctness, although results are still not yet perfect.
Research from O’Brien (2025) shows similar results. Although
achieving improved syntactic correctness, semantic correctness
of the generated programs lagged behind showing room for im-
provement (Alberts et al., 2025).
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Figure 1: Chain of Thought as used by Alberts et al. (2025) and Heyninck et al.
(2025). The ASP program is generated in three steps: generating instances,
generating the generator, and generating the constraints. Each constraint is
generated separately.

Research towards iterative feedback loops for semantic cor-
rectness is available as well. Although not specifically fo-
cused on semantic correctness, Madaan et al. (2023) proposes
a framework where the model gives feedback on its own out-
put. It is not specified what aspect the feedback should focus
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Figure 2: Integration of syntactic feedback loop by Alberts et al. (2025). This
framework is applied for all LLMs from Figure 1.

on, and in the context of coding it could potentially focus on
syntax or code efficiency, but also on semantics. This loop is
repeated multiple times until maximum iterations are passed or
the model judges that the output is satisfactory.

Chen et al. (2023) focus more on the coding domain and pro-
pose a framework where feedback is not only based on self-
assessment, but on a combination of an explanation of the code
(as generated by the model itself) and results from unit tests if
available. Similar to Madaan et al. (2023) this process is re-
peated multiple times.

Furthermore, research from Jiang et al. (2025) suggests that
we should train models to provide better feedback on code.
Their results show an improvement in code quality using this
approach.

3. Goal

In this paper, we will expand upon previous research, most
notably the work from Alberts et al. (2025) and Heyninck et al.
(2025), by expanding the existing feedback mechanism using
the same concepts as Madaan et al. (2023) and Chen et al.
(2023). We will introduce a semantic feedback loop along-
side the syntactic feedback loop to investigate the impact on
semantic correctness. Furthermore, we enhance the generation
process by leveraging LoRA to fine-tune on a teacher-student
distilled dataset based on ASP problems. Crucially, this train-
ing explicitly targets a “repair task” to internalize the debugging
process found in Alberts et al. (2025) and neural program repair
(Yasunaga and Liang, 2020), thereby improving the model’s ca-
pability to write and fix syntactically correct ASP code. Our
central research question for this paper is thus: To what extent
can a dual-stage repair architecture - combining syntax vali-
dation and semantic correction - and fine-tuning on Clingo ex-
amples improve the syntactic and semantic correctness of ASP
programs generated by large language models?

4. Data analysis

A major challenge in fine-tuning LLMs for ASP is the
scarcity of high-quality, diverse datasets that align natural lan-
guage with formal logic. To address this, we constructed a
dataset using a Teacher-Student Distillation pipeline, designed
to support modular code generation and iterative repair.

4.1. Distillation via Deconstruction

We curated a set of complex scheduling and combinato-
rial optimization problems from publicly available ASP prob-
lems written in Clingo (Potassco Group, 2026; Guerin, 2026;
Banbara et al., 2019; Gebser et al., 2018; van der West-
huizen, 2025). Using the Gemini-3-flash-preview model as
the “teacher”, we decomposed these monolithic programs into
modular components. The teacher was guided by a strict system
prompt (see Appendix D) to:

1. Deconstruct: Isolate specific logic into modular cate-
gories: Instance Templates, Generators, Hard Constraints,
and Soft Constraints.

2. Refactor: Modernize legacy ASP code into Clingo 5+
syntax (e.g., enforcing variable safety and correct aggre-
gate syntax).

3. Tone Variation: Rewrite the natural language descrip-
tions in five distinct personas (Academic, Casual Devel-
oper, Business, Succinct, Didactic) to prevent the student
model from overfitting to specific keywords.

During this distillation, we implemented a Teacher-Repair
Loop. Every extracted snippet was verified against the Clingo
compiler. If the teacher generated invalid code, the compiler er-
ror was fed back to the teacher to self-correct the snippet before
it was added to the dataset.

4.2. Synthetic Corruption for Repair Training

To enable the solver-in-the-loop capability, we augmented
the dataset with a Synthetic Repair Task applied with a prob-
ability of p = 0.5. This ratio was selected to balance theoreti-
cal multi-task learning objectives with empirical regularization.
Theoretically, the balanced split prevents catastrophic forget-
ting of the primary generation task while internalizing debug-
ging logic. Empirically, we observed that higher repair prob-
abilities led to lexical overfitting, where the model memorized
specific predicates from the training set and hallucinated them
into unrelated test solutions. The chosen p = 0.5 threshold
effectively mitigates this memorization risk while establishing
robust repair capabilities.

We programmatically injected errors into valid ASP snippets
to mimic common LLM failure modes. The corruption logic
included:

e Syntax & Termination: Removing periods or injecting
Markdown code fences.

o Aggregate Malformation: Replacing ASP aggregates
with invalid syntax (e.g., using {{. . .}} or pipes |).



e Unsafe Variables: Removing body literals to create un-
safe variable errors.

e Logic Drift: Injecting Python or SQL-style operators
(e.g., and, or, ==, <>, if) to train the model to correct
procedural hallucinations.

Each corrupted snippet was paired with its corresponding
Clingo error message. The resulting training tuple is format-
ted as:

(System + Description + Corrupted_Code
+ Error_Message) — (Valid_Code)

This explicitly trains the model to interpret compiler feedback
and perform localized debugging.

4.3. Context-Aware Training Construction

Once the benchmark problems were deconstructed into mod-
ular components (Instance, Generator, Constraints), we trans-
formed them into a supervised fine-tuning (SFT) dataset us-
ing the ChatML format. Crucially, a cumulative context strat-
egy is employed to capture the inherent inter-line dependencies
of ASP programs, such that each subsequent line is generated
given the previously produced code.

In our pipeline, downstream components (like constraints)
rely on the predicates defined in upstream components (like the
instance template). To capture this during training, we con-
structed the user prompts cumulatively:

¢ Instance Task: The model is given only the natural lan-
guage description.

e Generator Task: The model is given the description and
the canonical Instance Template.

e Constraint Task: The model is given the description, the
Instance Template, and the Generator.

For the Repair Task, we adopted an inverted context strategy.
To simulate a debugging workflow, the User Prompt focuses ex-
clusively on the immediate syntax error and the corrupted code.
However, to ensure the model retains semantic awareness (e.g.,
knowing which predicates are valid), we injected the original
Problem Description directly into the System Prompt. This al-
lows the model to "reference" the problem context without dis-
tracting from the immediate error-correction task.

The exact structure of the prompts and context provided for
each training task is detailed in Appendix A. To ensure the
model adhered to the specific requirements of each modular
task (e.g., preventing optimization logic in the generator), we
utilized specialized system prompts for each stage, which are
detailed in Appendix B.

5. Methodology and implementation

5.1. Semantic feedback loop

The semantic feedback loop expands upon the existing
framework from Alberts et al. (2025). A general overview can

be seen in Figure 3. Once syntactically correct Clingo code has
been generated, another LLM, the Semantic Validation LLM,
validates if the generated Clingo code matches the given intent,
and if this is not the case provides a reason explaining the dif-
ference. This reason is then fed back into the Clingo LLM for
repair. If no syntactically correct code could be generated (even
after repair attempts), no semantic repair attempts are made.
Furthermore, as semantic repair can cause new syntax issues, it
is possible that the syntactic feedback loop is repeated multiple
times, with the total possible amount of syntax repair iterations
increasing from k for the framework from Figure 2 to k(n + 1)
for the new framework with k being the maximal amount of iter-
ations for the syntactic feedback loop and n being the maximal
amount of iterations for the semantic feedback loop.

It should be noted that the Semantic Validation LLM can be
a different model than the LLMs used for generation and repair.
This allows for a fine-tuned model to be used for generation,
while also being able to use a different (fine-tuned) model for
semantic validation. The system prompt used for the Semantic
Validation LLM can be found in Appendix C.
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Figure 3: Integration of semantic feedback loop. The feedback loop expands
upon the framework shown in Figure 2 by creating an additional loop which
validates semantic correctness using an LLM.

5.2. Fine-tuning

We performed Supervised Fine-Tuning (SFT) us-
ing the Apple MLX framework, to efficiently train the
Qwen2.5-7B-Instruct model on consumer hardware.

To determine the optimal capacity for the LoRA adapters, we
conducted a comparative analysis between two configurations:

1. Standard MLX Defaults: The baseline configuration
provided by the MLX framework (r = 8, dropout = 0.0,



a = 160.0). This setting targets fewer parameters and is
typically optimized for general text generation tasks.

2. Logic-Optimized Settings: A high-rank configuration
adapted from van der Westhuizen (2025), designed specif-
ically for ASP synthesis (r = 32, dropout = 0.05, a = 64).

Our preliminary experiments demonstrated a significant per-
formance divergence. While the standard configuration (MLX
Default) was computationally lighter, it struggled to capture the
rigid structural rules of ASP, frequently “hallucinating” invalid
syntax. In contrast, the logic-optimized settings increased the
trainable parameter count to approximately 46M (0.6%). This
added capacity proved crucial for internalizing the logic of vari-
able safety and constraints.

Based on these results, we adopted the logic-optimized con-
figuration for all final experiments. Training was performed for
a fixed duration of 900 iterations without early stopping, allow-
ing the model to fully converge on the complex logic of the
training set. We utilized an AdamW optimizer with a cosine
decay scheduler, starting at a learning rate of 1e=>. The final
hyperparameters are detailed in Table 1.

Parameter Value

Base Model Qwen2.5-7B-Instruct
Technique QLOoRA (4-bit)
LoRA Rank (r) 32

LoRA Alpha (@) 64

LoRA Dropout 0.05

Target Modules All Linear Layers
Optimizer AdamW

Learning Rate le™> (Cosine Decay)
Max Sequence Length 4096

Iterations
Batch Size

900 (No Early Stopping)
1 (Grad. Accum. = 4)

Table 1: Final Hyperparameters used for Fine-tuning.

5.3. Experiment setup

To evaluate our approach, we run several experiments us-
ing the same scheduling problems as Alberts et al. (2025)
and Heyninck et al. (2025). These consist of Nurse Schedul-
ing, Post-Enrollment Based Course Timetabling, Sports
Timetabling, and Exam Timetabling. We will use three differ-
ent setups, being:

1. An experiment with a fine-tuned model and n = 0.
2. An experiment with no fine-tuning and n = 3.
3. An experiment with both fine-tuning and n = 3.

As we made several small tweaks to the system prompts used
for the several generation steps, we also run an experiment us-
ing no fine-tuning and n = 0 to use as a baseline to compare our
results with. All experiments will be run with £ = 3, resulting
in a maximum of 3(3 + 1) = 12 syntax feedback loops for ex-
periments with n = 3 and a maximum of 3(0 + 1) = 3 syntax
feedback loops for experiments with n = 0. We will run our
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Figure 4: Amount of correct and incorrect generated instances, generators, and
constraints per semantic feedback loop iteration. Correctness is determined by
the Semantic Validation LLM.

experiments using Qwen2.5-7B-Instruct for both code gen-
eration as well as semantic validation, with temperature =
0.01 and top-p = O for more deterministic generation. In
our fine-tuned experiment setups, we will use the fine-tuned
Qwen2.5-7B-Instruct model for code generation and the
non-fine-tuned Qwen2.5-7B-Instruct for semantic valida-
tion. In total, we thus run 4 setups X 4 scheduling problems =
16 experiments. Our full code including results can be found
onhttps://github.com/Ez10e6/SchASPLM-Shamantics.

6. Evaluation and results

All generated programs are evaluated along two dimensions:
syntactic correctness, determined by whether Clingo can suc-
cessfully parse the program, and semantic correctness, assessed
through human inspection. The results of the 16 experiments
are summarized in Table 2. Fine-tuning consistently improves
both syntactic and semantic correctness across all settings, with
almost perfect syntax as a result. In contrast, incorporating a
semantic feedback loop does not yield additional gains and is
associated with a slight decrease in semantic accuracy for both
fine-tuned and non—fine-tuned models.

An analysis of the number of semantic feedback itera-
tions required before achieving semantic correctness (see Fig-
ures 4 and 5), reveals a clear pattern. Note that semantic cor-
rectness in both figures is defined as the evaluation by the LLM
itself. The majority of generation tasks (69%) achieve seman-
tic correctness without requiring any semantic feedback. The
effectiveness of semantic repairs declines sharply after the sec-
ond iteration, with only 10% of repairs being successful in the
third iteration. Additionally, semantic repair steps may intro-
duce new syntactic errors, potentially resulting in code that is
both syntactically and semantically incorrect, further lowering
the amount of successful repairs.

To get a better understanding of why semantic repair fails,
we investigate some failed repair attempts. In Table 3 we see
the semantic repair attempts for the constraint "Each nurse must
work at least the specified minimum and at most the specified
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No Fine-tuning Fine-tuned
n=20 n=73 n=20 n=3

Syn. Sem. Syn. Sem. Syn. Sem. Syn. Sem
Exam Timetabling
Instance 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8
Generator 1/1 0/1 1/1 0/1 1/1 0/1 1/1 0/1
Hard Constraints /7 0/7 8/8 2/7 /7 5/7 7/7 4/7
Soft Constraints 5/7 1/6 3/9 0/6 7/7 4/6 777 4/6
Course Timetabling
Instance 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8
Generator 2/2 1/1 1/1 0/1 1/1 0/1 1/1 0/1
Hard Constraints 5/6 3/6 6/6 3/6 6/6 4/6 6/6 4/6
Soft Constraints 3/3 1/3 2/3 0/3 3/3 0/3 3/3 0/3
Nurse Scheduling
Instance 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6
Generator 0/1 0/1 0/1 0/1 1/1 0/1 1/1 0/1
Hard Constraints 9/12 4/8 8/12 4/8 11/12 5/8 11/12 5/8
Soft Constraints 2/2 0/1 3/3 0/1 2/2 0/1 2/2 0/1
Sports Timetabling
Instance 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
Generator 11 /1 1/1 1/1 1/1 0/1 1/1 0/1
Hard Constraints 3/3 2/3 3/3 2/3 3/3 2/3 3/3 2/3
Soft Constraints 1/1 0/1 1/1 0/1 1/1 0/1 1/1 0/1
Total 64/71 38/64 62/74 37/64 69/70 45/64 69/70 44/64
Percentage 90.14% 59.38% 83.78% 57.81% 98.57% 7031% 98.57% 68.75%

Table 2: Results of the experiments on the four scheduling problems using fine-tuned and non-fine-tuned models, for k& € {0, 3}. Syntax accuracy is reported as the
fraction of syntactically correct lines over the total number of lines. Semantic accuracy is reported as the fraction of correctly generated instances, generators, or
constraints over the total number requested, noting that each such element may span multiple lines of code.
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Figure 5: Percentage of correctly generated instances, generators, and con-
straints per semantic feedback loop iteration. Correctness is determined by the
Semantic Validation LLM.

maximum number of hours". Although the initially generated
code is correct, the Semantic Validator LLM does not assess it
as such. The result is that in all repair attempts, the Clingo LLM
generated the same code as before and the Semantic Validation
LLM thus provides the same feedback. Interestingly, the end
result is a syntactic and semantic correct constraint, with the
additional cost of running three unnecessary semantic feedback
loops.

A different problem can be seen in Table 4 for the generation
of the constraint "Rooms must have the required features for
the event.”". The generated code is incorrect, as it now does
not allow for an event to be scheduled in a room with a certain
feature if the event does not require that feature. The Semantic
Validation LLM, however, marks it as correct, not triggering
the semantic feedback loop and resulting in incorrect code in
the final output.

7. Conclusion and discussion

Our goal was to investigate whether a dual-stage repair struc-
ture including both syntactic and semantic validation combined
with fine-tuning LLMs using Clingo code examples improved
the syntactic and semantic correctness of generated ASP pro-
grams. Based on our results, we can conclude that fine-tuning
does indeed cause an improvement. The semantic feedback
loop, however, does not. Our best performing setup is therefore



Step Generated Code

Semantic Validator Assessment

Initial generation
DDay:

work_requirement (Nurse, Min, _).

:- nurse(Nurse), #sum{Duration, Shift_type,
works (Nurse, Shift_type, DDay),
shift_type(Shift_type, Duration)} < Min,

Incorrect - The code enforces global minimum and maxi-
mum constraints for all nurses combined, rather than indi-
vidual constraints for each nurse.

nurse (Nurse), #sum{Duration, Shift_type,

DDay:

works (Nurse, Shift_type, DDay),

shift_type(Shift_type, Duration)} > Max,

work_requirement (Nurse, _, Max).

Repair 1 No change No change
Repair 2 No change No change
Repair 3 No change No change

Table 3: Example of a failed semantic repair process caused by incorrect validator feedback for generation of the constraint "Each nurse must work at least the

specified minimum and at most the specified maximum number of hours".

Step Generated Code

Semantic Validator Assessment

Initial generation
room_feature (FEATURE, Room), not

feature_requirement (FEATURE, Event).

:- assigned(Event, Timeslot, Room),

Correct

Table 4: Example of a failed semantic repair process caused by incorrect validator feedback for generation of the constraint "Rooms must have the required features

for the event.".

using a fine-tuned model and no semantic repair loop (n = 0),
with 98.57% syntactic accuracy and 70.31% semantic accuracy.

These findings suggest the efficacy of a fine-tuning method-
ology that integrates two complementary data streams: distilled
benchmark problems for semantic diversity and synthetic repair
tasks for syntactic robustness. By combining natural language
variations with explicit error-correction training, the model ap-
pears to better navigate the translation from ambiguity to for-
mal logic than approaches relying solely on rigid templates.
The near-perfect syntactic accuracy observed in the fine-tuned
model implies that this dual-objective training helps internal-
ize the constraints typically enforced by a solver. Furthermore,
our experiments indicate that capturing these rigid structural
dependencies requires sufficient model capacity, as evidenced
by the necessity of higher-rank LoRA configurations over stan-
dard text-generation defaults to accommodate the complexity
of ASP logic.

Inspection of the semantic feedback loop reveals that the Se-
mantic Validator LLM frequently fails to accurately assess the
semantic correctness of generated Clingo programs. Both false
positives (accepting incorrect programs) and false negatives (re-
jecting correct programs) are observed. This suggests that the
current validation strategy is insufficiently robust and that se-
mantic validation itself should be treated as a learning problem.
A natural extension is to fine-tune the Semantic Validator LLM
as well. This can be achieved by repurposing the same dataset
used to fine-tune the Clingo generation LLMs, but with the di-
rection reversed: given a natural language specification and a
candidate Clingo program, the model learns to judge semantic
correctness rather than to generate code.

Other future work could focus on researching the generalis-
ability of our work, as we currently evaluate with scheduling
problems only. Further research could focus on performing the
same experiments on different kind of ASP problems. Demon-

strating such generalisability would move this approach from
a domain-specific improvement to a more general solution for
reliable ASP program generation.
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Appendix A. Exact Training Data Structure
3. Provide ONLY valid Clingo code. Do not

Table Appendix A details the exact construction of the in- — include comments, explanations, or
put context provided to the model. The User Prompt structure ~ markdown formatting.
corresponds directly to the string concatenation logic used in
our data generation pipeline. Note that for the Repair Task,
the problem description is injected into the System Prompt to

CRITICAL GUIDELINES:
1. *xChoice Rules**: Use cardinality
- constraints where appropriate (e.g., 1 {

simulate a focused debugging session.

Appendix B. Fine-tuning System Prompts

This appendix contains the verbatim system instructions used
to fine-tune the model for each specific modular task. These
instructions are inserted into the system role of the message

history.

Appendix B.1. Instance Generation

You are a bot that is tasked with natural
— language descriptions into Answer Set
- Programming (ASP).

Task: Convert natural language instance

— descriptions into ASP facts and domain
— definitions.

OUTPUT REQUIREMENTS:

1. Identify the objects, ranges, and constants
- from the description.

2. Write the corresponding Clingo facts (e.g.,
— mnode(1..5).).

3. Provide ONLY valid Clingo code. Do not

< 1include comments, explanations, or

- markdown formatting.

CRITICAL GUIDELINES:

1. **Facts Only**: Do not write rules with

-~ Dbodies (implied facts are okay, e.g., p(X)
- :- q(X). only if defining a domain).

2. **Naming#**: Use intuitive, consistent

- predicate names based on the description.

Appendix B.2. Generator Generation

generator.txt

You are a bot that is tasked with turning

— natural language into Answer Set

— Programming (ASP).

Task: Generate the choice rules (search space)
—~ and essential auxiliary logic.

OUTPUT REQUIREMENTS:

1. Define the choice rules { ... } to generate
< the search space defined in the

— description.

2. Define essential state transitions or

— auxiliary predicates if the problem

— requires them (e.g., planning steps).

S RO

2. *xPurity*x: Do NOT define helper predicates
— that are calculated solely for

- optimization/soft constraints.

3. *xSafety**: Do NOT include integrity

-~ constraints (:- ...) here.

4. **Auxiliary Logic**: ONLY define

< transitions (e.g., at(T+1)).

6. **NO OPTIMIZATION#**: Do NOT include

< #minimize, #maximize, or penalty/3

— predicates. If the user asks for a goal,
— 1ignore the evaluation part and only build
— the search space for it.

Appendix B.3. Constraint Generation

Note: The prompt for Soft Constraints follows a similar

structure but requests the penalty/3 predicate format.

hard_constraint.txt

You are a bot that is tasked with natural
— language descriptions into Answer Set
— Programming (ASP).

Task: Generate a hard constraint (integrity
-~ constraint) based on the description.

OUTPUT REQUIREMENTS:

1. Write the integrity constraint using the
- standard format: :- Body. (deriving

~ false).

2. Provide ONLY valid Clingo code. Do not
< 1include comments, explanations, or

— markdown formatting.

CRITICAL GUIDELINES:

1. *xStructure**: Prefer a single integrity

— constraint rule over creating intermediate
— helper predicates. Only create helper

— rules if the logic requires recursive

— definition.

2. *xAggregates*x: Inline aggregations (e.g.,
< #sum, #count) directly into the constraint
< body using the syntax :- . #count { X :
- p(X) }>0N ....

3. **Consistency**: Use EXACTLY the predicates
— defined in the provided

— <<instance_template>> and <<generator>>.
4. xxSafety**: Ensure all variables in the

— constraint are domain-guarded or bound by
— positive atoms in the body.




Table A.5: Exact configuration of training messages. {NL} denotes the Natural Language description; {INST} and {GEN} denote the generated Instance and

Generator code respectively.

Task System Prompt Source User Input Construction Target Output
Instance instance.txt Problem Description: {Instance
(Role definition + Constraints on  {NL} Code}
fact generation)
#i## TASK
Create the instance template (define predicates and
domains).
Generator generator.txt Problem Description: {Generator
(Rules on choice constraints and pu-  {NL} Code}
rity)
«instance_template»
{INST}
#i## TASK
Create the generator (choice rules).
Constraints hard_constraint.txt CONTEXT: {Constraint
(Hard & Soft) or «problem_description» Rule}
soft_constraint.txt {NL}
(Specific syntax guidelines) «instance_template»
{INST}
«generator»
{GEN}

### TARGET CONSTRAINT
Implement this [hard/soft] constraint:
{Constraint Description}

Repair repair_task.txt
Formatted with {NL}:
"CONTEXT Problem description:

{NL}"

The following code has an error:
{Corrupted Code}

Clingo Error:
{Error Message}

Fix the code.

{Valid Code}

Appendix B.4. Repair Task

You are a bot that fixes ASP (Answer Set

GOAL
- Take erroneous clingo code and return a

— or more lines) with minimal edits.

- possible.

- unless strictly necessary for safety
— them simple and local.

CONTEXT
Problem description: {description}

- Programming) syntax and safety for clingo.

- syntactically correct piece of code (one
- Preserve the intended semantics as much as

- Keep the original predicate set, arities,
- and naming. Do NOT invent new predicates

— (e.g., helper counts); if created, keep

INPUT

the following:

- Intended semantics
- Erroneous ASP code

- Clingo error message

OUTPUT

< #show/#minimize, etc.).

— semantics, do NOT fix it.

— explanations.

Each user prompt will contain one or more of

repair_task.txt

- Output ONLY the corrected clingo code for
< the intended semantics (facts, rules,

- When there are errors that originate from
— code not belonging to the intented

- No code fences, no extra text, no
- Preserve original order as much as possible;

— group any helper definitions immediately
— above the rule that uses them.

10



Appendix C. Semantic Validation LLM system prompt

You are an expert evaluator of Answer Set

— Programming (ASP) semantics. Your task is
< to determine whether the semantic meaning
— expressed by a given ASP program exactly
— matches a provided intended semantic

— description. Judge only the actual

- semantics of the ASP code, not the

— presumed intent of the author.

CONTEXT
Problem description:
<<problem_description>>

Instance/template predicates (generated so
- far):
<<instance_template>>

Generator predicates (generated so far):
<<generator>>

These are context only. Your judgment must be
— based solely on the Generated ASP code.

TASK

Input:

1. Generated ASP code

2. Intended semantic meaning (natural
- language)

Decide whether they are semantically
- equivalent.

DECISION RULES

- Output "true" only if the ASP code enforces
— exactly the described semantics.
- Output "false" if there is any semantic
— difference, including but not limited to:
- Missing constraints
- Extra constraints
- Incorrect bounds
- Wrong quantification scope
- Predicate mismatch
- Incorrect use of negation
- Constraints applying globally instead of
- locally (or vice versa)
- Dependence on unintended predicates

STRICT GUIDELINES

- Stay faithful to what the code does.

- Do not assume reasonable intent.

- Do not repair or reinterpret the code.
- Even small semantic mismatches require
- "false".

OUTPUT FORMAT (MANDATORY)

11

Output ONLY JSON, nothing else. No
— explanations or other text than the JSON.
- This is crucial.

{
"match": "true" | "false",
"reason": "<short explanation if false,
- empty string if true>"

}

Examples:

EXAMPLE 1 - Simple upper bound (match)

Generated ASP code:
:- course(C), #count { S :
- 50.

enrolled(S,C) } >=

Intended semantic meaning:
Each course may have at most 49 students.

Output:

{
"match": "true",
llreasonll . nn

}

EXAMPLE 2 - Lower bound instead of upper bound
< (mismatch)

Generated ASP code:
:- course(C), #count { S :
- bBO.

enrolled(S,C) } <

Intended semantic meaning:
Each course may have at most 49 students.

Output:
{
"match": "false",
"reason": "The code enforces a minimum of 50

— students rather than an upper bound."

EXAMPLE 3 - Global vs per-entity constraint
< (mismatch)

Generated ASP code:
:- #tcount { S : enrolled(S,_) } > 300.

Intended semantic meaning:
Each course should have at most 300 students.

Output:
{

"match": "false",




"reason": "The constraint applies globally
« across all courses instead of per
— course."

EXAMPLE 4 - Missing temporal condition
~ (mismatch)

Generated ASP code:

:- room(R), #count { C : scheduled(C,R) } > 1.
Intended semantic meaning:

At most one course may be scheduled in a room
- at the same time.

Output:
{
"match": "false",
"reason": "The code ignores time and forbids
— multiple courses in a room across all
—~ times."
}

EXAMPLE 5 - Correct use of negation (match)

Generated ASP code:
:- student(S), not enrolled(S,_).

Intended semantic meaning:
Every student must be enrolled in at least one
- course.

Output:

{
"match": "true",
Ilreasonll R nn

}

EXAMPLE 6 - Weak constraint instead of hard
<~ constraint (mismatch)

Generated ASP code:
~ course(C), #count { S :
- 30. [101, C]

enrolled(S,C) } >

Intended semantic meaning:
No course may have more than 30 students.

Output:
{
"match": "false",
"reason": "The code expresses a preference,

— mnot a hard prohibition."

EXAMPLE 7 - Choice rule allows too much
— (mismatch)

Generated ASP code:
0 { assigned(S,C) : student(S) } 1 :-
— course(C).

Intended semantic meaning:
Each course must have exactly one student
— assigned.

Output:
{
"match": "false",
"reason": "The code allows courses to have

— zero assigned students."

EXAMPLE 8 - Exact cardinality (match)

Generated ASP code:
1 { assigned(S,C) : student(S) } 1 :-
— course(C).

Intended semantic meaning:
Each course must have exactly one student
— assigned.

Output:

{
"match": "true",
Ilreasonll : nn

}

EXAMPLE 9 - Extra unintended restriction
— (match)

Generated ASP code:
:- enrolled(S,C), not active(S).

Intended semantic meaning:
Only active students may enroll in courses.

Output:

{
"match": "true",
|lreasonll B nn

}

EXAMPLE 10 - Predicate mismatch (mismatch)

Generated ASP code:
:- enrolled(S,C), not registered(S).

12



Intended semantic meaning:
Only active students may enroll in courses.

Output:
{
"match": "false",
"reason": "The code restricts enrollment

— based on registration status, not
— activity."

Appendix D. Data Generation Prompts (Teacher)

This appendix contains the prompts used with Gemini-3-
Flash-preview to distill and corrupt the training data.

Appendix D.1. Teacher-Repair (Distillation Loop)

This prompt is used when the Teacher model generates code
that fails Clingo validation. It feeds the specific error back to
the Teacher to self-correct the data point.

repair_gemini.txt

You are an expert Clingo debugger and Answer
-~ Set Programming (ASP) specialist.

The following ASP code snippet is

— syntactically invalid or logically

- incorrect.

Your task is to REPAIR the code using ONLY the
< predicates and constants defined in the
- provided context.

### Context (Available Predicates & Logic)
{context}

### Requirement to Implement
{description}

### Erroneous Code
{code}

### Clingo Compiler Error
{error}

### Repair Instructions

1. =*xSyntax Fixes:** Correct missing periods,
- unmatched brackets, incorrect aggregates
— based on the Compiler Error.

2. xxSafety First:*x Fix any "Unsafe

— Variable" errors by ensuring every

- variable is guarded.

3. **Syntax:** Use single backslash \ for

- modulo and = for equality.

### Output
[The corrected code]
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Appendix D.2. Extraction and Distillation

This prompt is used to decompose benchmark problems into

modular JSON components and apply tone variations.

extraction.txt

You are an expert in Answer Set Programming (specifically
Clingo 5+ syntax).

I will give you a full problem description (NL) and a full
ASP solution.

Your task is to DECONSTRUCT this solution into the
specific structural components required for a
scheduler system.

Return the result as a valid JSON object.

### CODE REFACTORING & OPTIMIZATION (CRITICAL)

The input ASP code might be old, inefficient, or
syntactically loose. Do NOT just copy-paste it.

**You have full authority to rewrite the logic** to ensure
the highest quality training data:

1. #*Modernize:*x Use modern Clingo 5+ syntax (e.g.,
#count, #sum). Replace deprecated constructs.

2. *xx0Optimize:** If a constraint is written
inefficiently, refactor it.

3. =**Correctness:** If the input code contains logical
bugs or syntax errors, **FIX THEM#*x*.

4. *xAtomicity:** If the input combines two distinct
logical requirements into one complex rule, **SPLIT
THEMx*x* ,

### EXHAUSTIVE EXTRACTION RULES

1. *xNo Summarization:** Extract **EVERY** distinct
hard/soft constraint.

2. =x*xGranularity:** Create a separate JSON object for
each distinct logical requirement.

### TONE INSTRUCTION

For the 'description' fields in the JSON, you must write
the natural language requirement using this specific
tone:

{selected_tone}

### SYNTAX INSTRUCTION (Strict Clingo 5+)

Ensure all extracted 'asp_rule' fields contain VALID, SAFE
Clingo code:

1. #*xPenalty Structure:** For soft constraints, generate:
penalty("Name", Tuple, Cost) :- .

2. *xAggregates:*x Use #count { ... }. Use the colon :
separator.

3. #**xVariable Safety:** Every variable in a rule must be
grounded.

4. *xStrings:** Use double quotes (") for string
constants.

5. **Modulo Operator:** Use a single backslash \ for
modulo. NEVER use \\ or %.

6. xkxAggregate Binding:#** NEVER compare a variable
directly to an aggregate block. Assign to a
temporary variable first.

Input NL: {nl_content}
Input ASP: {asp_content}

JSON OUTPUT REQUIREMENTS:
Structure the JSON exactly like this:

{
"instance_template": "The facts and domain
definitions...",
"generator": "The choice rules { ... }...",
"hard_constraints": [ { "description": "...",
"asp_rule": "..." } ],
"soft_constraints": [ { "description": "...",
"asp_rule": "..." } ],
"global_objective": "The single #minimize { ... }
statement..."
}
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